Development and Control of a 'Soft-Actuated' Exoskeleton for Use in Physiotherapy and Training

نویسندگان

  • Nikolaos G. Tsagarakis
  • Darwin G. Caldwell
چکیده

Full or partial loss of function in the upper limb is an increasingly common due to sports injuries, occupational injuries, spinal cord injuries, and strokes. Typically treatment for these conditions relies on manipulative physiotherapy procedures which are extremely labour intensive. Although mechanical assistive device exist for limbs this is rare for the upper body. In this paper we describe the construction and testing of a seven degree of motion prototype upper arm training/ rehabilitation (exoskeleton) system. The total weight of the uncompensated orthosis is less than 2 kg. This low mass is primarily due to the use of a new range of pneumatic Muscle Actuators (pMA) as power source for the system. This type of actuator, which has also an excellent power/weight ratio, meets the need for safety, simplicity and lightness. The work presented shows how the system takes advantage of the inherent controllable compliance to produce a unit that is extremely powerful, providing a wide range of functionality (motion and forces over an extended range) in a manner that has high safety integrity for the patient. A training control scheme is introduced which is used to control the orthosis when used as exercise facility. Results demonstrate the potential of the device as an upper limb training, rehabilitation and power assist (exoskeleton) system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation—Vision-Based Control for Precise Reaching Motion of Upper Limb

We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can s...

متن کامل

A Compliant exoskeleton for multi-planar upper limb physiotherapy and training

In general, treatment of full or partial loss of function in the upper limb due to injury relies on extremely labour intensive physiotherapy procedures. Although mechanical assistive device exist for limbs this is rare for the upper body. In this paper we present a seven degree of motion prototype upper arm training/physiotherapy (exoskeleton) system. The total weight of the uncompensated ortho...

متن کامل

Conceptual Design of a Gait Rehabilitation Robot

Gait rehabilitation using body weight support on a treadmill is a recommended rehabilitation technique for neurological injuries, such as spinal cord injury. In this paper, a new robotic orthosis is presented for treadmill training. In the presented design the criteria such as low inertia of robot components, backdrivability, high safety and degrees of freedom based on human walking are conside...

متن کامل

Application of EMG signals for controlling exoskeleton robots.

Exoskeleton robots are mechanical constructions attached to human body parts, containing actuators for influencing human motion. One important application area for exoskeletons is human motion support, for example, for disabled people, including rehabilitation training, and for force enhancement in healthy subjects. This paper surveys two exoskeleton systems developed in our laboratory. The fir...

متن کامل

Robot-assisted Therapy in Stroke Rehabilitation

Research into rehabilitation robotics has grown rapidly and the number of therapeutic rehabilitation robots has expanded dramatically during the last two decades. Robotic rehabilitation therapy can deliver high-dosage and high-intensity training, making it useful for patients with motor disorders caused by stroke or spinal cord disease. Robotic devices used for motor rehabilitation include end-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Auton. Robots

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2003